Product Description

Sirenza Microdevices' XD010-24S-D2F 12W power module is a robust 2stage Class $A / A B$ amplifier module for use in the driver stages of CDMA RF power amplifiers. The power transistors are fabricated using Sirenza's latest, high performance LDMOS process. This unit operates from a single voltage and has internal temperature compensation of the bias voltage to ensure consistant performance over the full temperature range. It is internally matched to 50 ohms.

Functional Block Diagram

Stage 1
Stage 2

Case Flange = Ground

XD010-24S-D2F XD010-24S-D2FY

1930-1990 MHz Class AIAB 12W CDMA Driver Amplifier

Product Features

- Available in RoHS compliant packaging
- 50Ω RF impedance
- 12W Output $P_{1 d B}$
- Single Supply Operation : Nominally 28V
- High Gain: $\mathbf{2 8}$ dB at 1960 MHz
- High Efficiency: 26\% at 1960 MHz
- Advanced, XeMOS LDMOS II FETS
- Temperature Compensation

Applications

- Base Station PA driver
- Repeater
- CDMA
- GSM / EDGE

Key Specifications

Symbol	Parameter	Unit	Min.	Typ.	Max.
Frequency	Frequency of Operation	MHz	1930		1990
$\mathrm{P}_{1 \mathrm{~dB}}$	Output Power at 1dB Compression	W	10	12	
Gain	Gain at 1W Output Power	dB	26	28	
Gain Flatness	Peak to Peak Gain Variation, 1930-1990MHz	dB		0.4	1.0
IRL	Input Return Loss 1W Output Power, 1930-1990MHz	dB	10	14	
	Drain Efficiency at 10W CW output	\%	20	26	
Efficiency	Drain Efficiency at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd)	\%		12	
	Drain Efficiency at 1W CDMA (Single Carrier IS-95, 9 Ch Fwd)	\%		6.5	
	ACPR at 1W CDMA Power Output (Single Carrier IS-95, 9 Ch Fwd, Offset=750KHz, ACPR Integrated Bandwidth)	dB		-58	
Linearity	ALT-1 at 2W CDMA (Single Carrier IS-95, 9 Ch Fwd, Offset=1980 KHz, ACPR Integrated Bandwidth)	dB		-70	
	$3^{\text {rd }}$ Order IMD at 10W PEP (Two Tone; 1MHz)	dBc	-27	-32	
Delay	Signal Delay from Pin 1 to Pin 5	nS		2.9	
Phase Linearity	Deviation from Linear Phase (Peak to Peak)	Deg		0.5	
$\mathrm{R}_{\text {TH, } \mathrm{j}-1}$	Thermal Resistance Stage 1 (Junction to Case)	${ }^{\circ} \mathrm{C} / \mathrm{W}$		11	
$\mathrm{R}_{\text {TH, }} \mathrm{j}-2$	Thermal Resistance Stage 2 (Junction to Case)	${ }^{\circ} \mathrm{C} / \mathrm{W}$		4	

Test Conditions: $\mathrm{Z}_{\text {in }}=\mathrm{Z}_{\text {out }}=50 \Omega, \mathrm{~V}_{\mathrm{DD}}=28.0 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ} 1}=230 \mathrm{~mA}, \mathrm{I}_{\mathrm{DQ} 2}=150 \mathrm{~mA}, \mathrm{~T}_{\text {Flange }}=25^{\circ} \mathrm{C}$

[^0]
Quality Specifications

Parameter	Human Body Model, JEDEC Document - JESD22-A114-B	Unit	Typical
ESD Rating	$85^{\circ} \mathrm{C}$ Baseplate, $200^{\circ} \mathrm{C}$ Channel	V	8000
MTTF	H	1.2×10^{6}	

Pin Out Description

Pin \#	Function	Description
1	RF Input	Module RF input. Care must be taken to protect against video transients that may damage the active devices.
2	$\mathrm{V}_{\mathrm{D} 1}$	This is the bias feed for the $1^{\text {st }}$ stage of the amplifier module. The gate bias is temperature compensated to maintain constant current over the operating temperature range. See Note 1.
3,4	$\mathrm{V}_{\mathrm{D} 2}$	This is the bias feed for the $2^{\text {nd }}$ stage of the amplifier module. The gate bias is temperature compensated to maintain constant current over the operating temperature range. See Note 1.
5	RF Output	Module RF output. Care must be taken to protect against video transients that may damage the active devices.
Flange	Gnd	Exposed area on the bottom side of the package needs to be mechanically attached to the ground plane of the board for optimum thermal and RF performance. See mounting instructions for recommendation.

Simplified Device Schematic

Case Flange $=$ Ground

Absolute Maximum Ratings

Parameters	Value	Unit
$1^{\text {st }}$ Stage Bias Voltage ($\mathrm{V}_{\mathrm{D} 1}$)	35	V
$2^{\text {nd }}$ Stage Bias Voltage (V2)	35	V
RF Input Power	+20	dBm
Load Impedance for Continuous Operation Without Damage	$5: 1$	VSWR
Output Device Channel Temperature	+200	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	-20 to +90	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-40 to +100	${ }^{\circ} \mathrm{C}$
Operation of this device beyond any one of these limits may (ause permanent damage. For reliable continuous operation see typical setup values specified in the table on page one.		

Caution: ESD Sensitive

Appropriate precaution in handling, packaging and testing devices must be observed.

Note 1:
The internally generated gate voltage is thermally compensated to maintain constant quiescent current over the temperature range listed in the data sheet. No compensation is provided for gain changes with temperature. This can only be accomplished with AGC external to the module.

Note 2:

Internal RF decoupling is included on all bias leads. No additional bypass elements are required, however some applications may require energy storage on the drain leads to accommodate time-varying waveforms.

Note 3:

This module was designed to have its leads hand soldered to an adjacent PCB. The maximum soldering iron tip temperature should not exceed $700^{\circ} \mathrm{F}$, and the soldering iron tip should not be in direct contact with the lead for longer than 10 seconds.
Refer to app note AN060 (www.sirenza.com) for further installation instructions.

Typical Performance Curves

Gain, Output Power and Efficiency vs. Input Power
Freq $=1960 \mathrm{MHz}, \mathrm{Vdd}=28 \mathrm{~V}, \mathrm{~T}_{\text {Flange }}=25^{\circ} \mathrm{C}$

Gain and Efficiency vs. Output Power and Temperature
Freq $=1960 \mathrm{MHz}, \mathrm{Vdd}=28 \mathrm{~V}$, $\mathrm{T}_{\text {Flange }}=-20^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}$

ACPR and ALT1 vs. Output Power and Temperature
Freq $=1960 \mathrm{MHz}$ IS-95 Vdd= $=28 \mathrm{~V}, \mathrm{~T}_{\text {Fange }}=-20^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}$
ACPR $885 \mathrm{kHz}, 30 \mathrm{kHz}$

Gain, Efficiency and ACPR vs. Frequency
Freq $=1960 \mathrm{MHz}, \mathrm{Vdd}=28 \mathrm{~V}, \mathrm{~T}_{\text {Fange }}=25^{\circ} \mathrm{C}$
Output Power=2 Watts

Gain and Efficiency vs. Output Power and Voltage
Freq $=1960 \mathrm{MHz}, \mathrm{Vdd}=24 \mathrm{~V}, 28 \mathrm{~V}, 32 \mathrm{~V} \mathrm{~T}_{\text {Flange }}=25^{\circ} \mathrm{C}$

Two Tone IMD vs. Output Power and Temperature Freq $=1960,1961 \mathrm{MHz}, \mathrm{Vdd}=28 \mathrm{~V}, \mathrm{~T}_{\text {Hange }}=-20^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}$

Test Board Schematic with module attachments shown

Test Board Bill of Materials

Test Board Layout

To receive Gerber files, DXF drawings, a detailed BOM, and assembly recommendations for the test board with fixture, contact applications support at support@sirenza.com. Data sheet for evaluation circuit (XD010-EVAL) available from Sirenza website.

303 S. Technology Court Broomfield, CO 80021

Phone: (800) SMI-MMIC
http://www.sirenza.com
EDS-102932 Rev E

Package Outline Drawing

Recommended PCB Cutout and Landing Pads for the D2F Package

Note 3: Dimensions are in inches

Refer to Application note AN-060 "Installation Instructions for XD Module Series" for additional mounting info. App note availbale at at www.sirenza.com

[^0]:
 does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2003 Sirenza Microdevices, Inc. All worldwide rights reserved.
 303 S. Technology Court, Phone: (800) SMI-MMIC
 http://www.sirenza.com
 Broomfield, CO 80021

